Isospin Asymmetry in Nuclei, Neutron Stars, and Heavy-Ion Collisions

Andrew W. Steiner (LANL)

21st Winter Workshop in Nuclear Dynamics

February 5, 2005

Outline

- Symmetry Energy
- Equation of State of Dense Matter
 - What do we know?
- Connection to heavy ion collisions
- Correlations
 - How correlations are useful
 - Three particular correlations
- What can we learn?

The Nuclear (A)symmetry Energy

- The symmetry energy is the size of the energy cost in QCD of creating an asymmetry between the number of neutrons and protons
- Note that the pressure (at zero
 T) is related to the derivative of
 the energy per baryon (E/A)
- Of concern is the magnitude of the symmetry energy and its density dependence

Taken from A.S., M. Prakash, J.M. Lattimer, and P.J. Ellis, Phys. Rep. (2005) in press.

The Influence of the Nuclear Symmetry Energy

Kaon/Pion Condensates

The Nuclear Symmetry Energy

- There is considerable variation among models, both relativistic and non-relativistic
- Relativistic models =
 Extensions of the Walecka
 model to include higher order
 interactions between the
 isoscalar and isovector mesons
- Non-relativistic models =
 Skyrme Hamiltonian
- APR = Akmal, et. al. Ab-initio Monte Carlo
 calculations of nuclear and
 neutron matter

Taken from A.S., M. Prakash, J.M. Lattimer, and P.J. Ellis, Phys. Rep. (2005) in press.

What do we know about the EOS?

- Properties of saturated nuclear matter: binding energy, saturation density, compressibility, effective mass, symmetry energy (25-35 MeV)
- Nuclear structure: nuclear binding energies and charge density distributions
 - Binding energies and charge radii of doubly-magic nuclei (²⁰⁸Pb, ⁹⁰Zr, ⁴⁰Ca) in the Hartree and Hartree-Fock approximations.

Stability

- Restrictions on the Landau parameters
- Pressure should increase with density
- Chemical potential should increase with concentration
- Neutron stars: Must be able to support a 1.44 solar mass neutron star (This may change soon!)
- These quantities are *easy* to calculate for a given EOS.

Fitting APR

- Original calculations based on exact methods accesible for A<16
- Fit the APR results to both a relativistic and non-relativistic model
- Now we can calculate large A nuclei!

Nucleus	Property	Experiment	Potential	Field-theoretical
²⁰⁸ Pb	Charge radius (fm)	5.50	5.41	5.41
	Binding energy (MeV)	7.87	7.87	7.77
	Skin thickness (fm)	$0.12\pm0.05, 0.20\pm0.04$	0.19	0.20
⁹⁰ Zr	Charge radius (fm)	4.27	4.18	4.17
	Binding energy (MeV)	8.71	8.88	8.65
	Skin thickness (fm)	0.09 ± 0.07	0.075	0.093
⁴⁰ Ca	Charge radius (fm)	3.48	3.40	3.34
	Binding energy (MeV)	8.45	8.89	8.61
	Skin thickness (fm)	-0.06 ± 0.05 , -0.05 ± 0.04	-0.044	-0.046

Low-density neutron matter

- Ab-initio calculations (like APR) of neutron matter predicit a fairly precise behavior of the EOS at low densities
- The energy per baryon should be about 1/2 the Fermi gas energy
- Our relativisitic fits to APR demonstrate that this is possible to express in a field-theoretical context
- This results in a clear finite-temperature generalization

Symmetry Energy and Heavy-Ion Collisions

- Heavy-ion collision observables are providing constraints on the symmetry energy
- More repulsion leads to higher pressures and more out-of-the plane emission.
- Elliptic flow

Taken from Danielewicz, Lacey, and Lynch, Science 298 (2002) 1592.

Symmetry Energy and Heavy-Ion Collisions

- Isotope separation instability If the symmetry energy becomes
 negative then it is energetically
 favorable for matter to separate
 into two phases. This has several
 observable implications in
 heavy-ion collisions. (Li 2002)
- Multifragmentation has been used to calculate the critical temperature of the liquid-gas phase transition (Li and Ko 1997 and Xu et. al. 2000)
- Isoscaling Scaling laws in isotope yields measured in two different nuclear reactions (Tsang et. al. 2001 and Ono et. al. 2003)
- Isospin Diffusion (Li 2002 and 2005)

Correlations

- If we have a correlation between two experimental observables hopefully a measurement of one will offer a prediction of the other
- How accurately can we calculate these observables from an equation of state? Systematic uncertainties?
- Understand our calculations
- Calculate those observables with as many EOSs as possible...
 ...making sure that we restrict ourselves only to EOSs which match what we know.
- We found very few models which matched this criteria, so in some cases, we made our own.

The Skin Thickness of Lead

 The "neutron skin thickness" is the difference between the neutron and proton rms radii:

$$\sqrt{\langle r_n^2
angle} - \sqrt{\langle r_p^2
angle}$$

- This number is tightly correlated to the pressure of neutron matter at a particular density
- The pressure of neutron matter is almost entirely determined by the symmetry energy
- The neutron skin thickness of Pb²⁰⁸ will be measured accurately at Jefferson Lab

$$\frac{\sigma_{\delta}}{E_{\text{sym}}} \sim \int \left[\frac{E_{sym}}{E_{sym}(n)} - 1 \right] \frac{n}{\left[\mathcal{H} + nB \right]^{1/2}} dn$$
$$\delta R \sim \frac{2\delta_L}{(1 - \delta_L^2)} \frac{\sigma_{\delta}}{E_{\text{sym}}}$$

Taken from A.S., M. Prakash, J.M. Lattimer, and P.J. Ellis, Phys. Rep. (2005) in press.

Lattimer-Prakash correlation

- Analytical solutions of the Tolman-Oppenheimer-Volkov equations suggest that $R \sim RP^{-\alpha}$
- So the radius is correlated with the pressure at densities somewhat larger than nuclear matter densities

Horowitz-Piekarewicz correlation

$\bullet \delta R \Leftrightarrow P \Leftrightarrow R_{NS}$

- This emerges naturally from the two previous correlations if the pressure at the two densities are correlated
- We find that this correlation is not quite linear, but obeys a power law
- A similiar correlation for the radius of the maximum mass star

What can we learn?

Symmetry Energy	Small symmetry energy	Large symmetry energy
Neutron stars	Small neutron star radii	Large neutron star radii
	Small moment of inertia	Large moment of inertia
	Slow modified URCA cooling	Fast direct URCA cooling
	More robust r-process	Less robust r-process
Nuclear Structure	Small skin thickness in lead	Large skin thickness in lead
	Smaller surface/volume contribution	Larger surface/volume contribution
Heavy-Ion Collisions	Less isospin-asymmetric flow	More isospin-asymmetric flow
	Possible isotope separation instability	No isotope separation instability
	Large liquid-gas transition density	Small liquid-gas transition density

- A sufficiently large neutron skin thickness rules out any isotope separation instability
- A large liquid-gas transition density would rule out large neutron star radii
- Too much flow would rule out a smaller neutron skin thickness in lead

Small Neutron Star Radii

- What is the smallest radius for a neutron star which doesn't contain exotic components?
- \bullet Largest accurate mass measurements used to be 1.44 M_{\odot}
- Recent neutron star mass measurements suggest masses at least 1.9 2 M_{\odot}

Taken from A.S., M. Prakash, J.M. Lattimer, and P.J. Ellis, Phys. Rep. (2005) in press.

Summary

- Determining the symmetry energy is within our reach, but...
- ...it will likely demand information from nuclear structure, astrophysics, and heavy-ion collisions.